数式で独楽する

数式を使って楽しむブログです

[tex: ]

2次元極座標系の偏微分~行列によるアプローチ

本稿では、
\begin{eqnarray}
x &=& r \cos \theta \\
y &=& r \sin \theta \tag{1}
\end{eqnarray}で表される2次元の極座標系$(r, \theta)$の偏微分について述べます。
ここでは、
2次元極座標系の偏微分 - 数式で独楽する
とは異なるアプローチで見ていきます。
極座標 - 数式で独楽する

極座標系による直交座標系の偏微分

式(1)より、容易に
\begin{eqnarray}
\frac{\partial x}{\partial r} = \cos \theta, & \quad \frac{\partial x}{\partial \theta} = -r \sin \theta \\
\frac{\partial y}{\partial r} = \sin \theta, & \quad \frac{\partial y}{\partial \theta} = r \cos \theta
\end{eqnarray}を得ることができます。
これより、任意の関数$u$を偏微分していきます。
\begin{eqnarray}
\frac{\partial u}{\partial r} &=& \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \cos \theta \, \frac{\partial u}{\partial x} + \sin \theta \, \frac{\partial u}{\partial y}\\
\frac{\partial u}{\partial \theta} &=& \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -r\sin \theta \, \frac{\partial u}{\partial x} + r\cos \theta \, \frac{\partial u}{\partial y}
\end{eqnarray}
この関係を、行列を用いて
\begin{equation}
\left( \begin{array}{c} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \end{array} \right)
= \left( \begin{array}{cc} \cos \theta & \sin \theta \\
- \sin \theta & \cos \theta \end{array} \right)
\left( \begin{array}{c} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{array} \right) \tag{2}
\end{equation}と表記します。

\begin{equation}
R = \left( \begin{array}{cc} \cos \theta & \sin \theta \\
-\sin \theta & \cos \theta \end{array} \right)
\end{equation}を用いて表すと、
\begin{equation}
\left( \begin{array}{c} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \end{array} \right)
= R \left( \begin{array}{c} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{array} \right)
\end{equation}となります。

直交座標系による極座標系の偏微分

式(2)の左から逆行列を掛けて、
\begin{equation}
\left( \begin{array}{c} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{array} \right)
= \left( \begin{array}{cc} \cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \end{array} \right)
\left( \begin{array}{c} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \end{array} \right) \tag{3}
\end{equation}を得ます。
なお、
\begin{equation}
\left( \begin{array}{c} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{array} \right)
= R^{-1} \left( \begin{array}{c} \frac{\partial u}{\partial r} \\ \frac{1}{r} \frac{\partial u}{\partial \theta} \end{array} \right)
\end{equation}となります。

式(3)を成分ごとに展開すると、
\begin{eqnarray}
\frac{\partial u}{\partial x} &=& \cos \theta \, \frac{\partial u}{\partial r} - \frac{\sin \theta}{r} \frac{\partial u}{\partial \theta} \\
\frac{\partial u}{\partial y} &=& \sin \theta \, \frac{\partial u}{\partial r} + \frac{\cos \theta}{r} \frac{\partial u}{\partial \theta} \tag{4}
\end{eqnarray}となります。

式(4)で$u=r, \theta$とすれば、
\begin{eqnarray}
\frac{\partial r}{\partial x} &=& \cos \theta \\
\frac{\partial r}{\partial y} &=& \sin \theta \\
\frac{\partial \theta}{\partial x} &=& -\frac{\sin \theta}{r} \\
\frac{\partial \theta}{\partial y} &=& \frac{\cos \theta}{r}
\end{eqnarray}を得ます。

f:id:toy1972:20200523064844p:plain:w300

f:id:toy1972:20200116231500g:plain:w300