数式で独楽する

数式を使って楽しむブログです

[tex: ]

2022-11-01から1ヶ月間の記事一覧

2002年後期 京大 理系 第5問 その2別解

数列を \begin{equation} a_{n +1} = {a_n}^2 +2{b_n}^2, \ \ b_{n +1} = 2a_n b_n \quad (n \geqq 1) \end{equation}で定める。

2002年後期 京大 理系 第5問 その2

数列を \begin{equation} a_{n +1} = {a_n}^2 +2{b_n}^2, \ \ b_{n +1} = 2a_n b_n \quad (n \geqq 1) \end{equation}で定める。

2002年後期 京大 理系 第5問 その1

数列を \begin{equation} a_{n +1} = {a_n}^2 +2{b_n}^2, \ \ b_{n +1} = 2a_n b_n \quad (n \geqq 1) \end{equation}で定める。

2002年後期 京大 理系 第4問

はの係数が1であるの次式である。相異なる個の有理数に対してがすべて有理数であれば、の係数はすべて有理数であることを、数学的帰納法を用いて示せ。

偶関数、奇関数とその定積分

\begin{equation} f(-x) = f(x) \end{equation}を満たす関数を偶関数、 \begin{equation} f(-x) = -f(x) \end{equation}を満たす関数を奇関数といいます。

2002年後期 京大 理系 第2問

楕円と円が相異なる4点で交わるという。このとき点のとりうる範囲を図示せよ。

2002年後期 京大 理系 第1問

1からまでの番号が、順番に1つずつ書かれた枚の札が袋に入っている。この袋の中から札を1枚ずつ取り出し、つぎの(i), (ii)のルールに従ってAまたはBの箱に入れる。

2002年前期 京大 理系 第6問

とし、は正の数とする。複素数平面上の点を次の条件(i), (ii)を満たすように定める。

2002年前期 京大 理系 第5問

を実数とする。とのグラフが相異なる3つの交点を持つという。このときが成立することを示し、さらにこれらの交点の座標のすべては開区間に含まれることを示せ。

2002年前期 京大 文系 第3問

四角形ABCDを底面とする四角錐OABCDはを満たしており、0と異なる4つの実数に対して4点P, Q, R, Sを

√(x^2+a^2)の不定積分 正接で置換

\begin{equation} \int \sqrt{x^2 +a^2} \, dx = \frac{1}{2} \, x \sqrt{x^2 +a^2} +\frac{1}{2} \, a^2 \log \left( x +\sqrt{x^2 +a^2} \right) +C \quad (a > 0) \end{equation}

√(x^2+a^2)の不定積分 双曲線関数で置換

\begin{equation} \int \sqrt{x^2 +a^2} \, dx = \frac{1}{2} \, x \sqrt{x^2 +a^2} +\frac{1}{2} \, a^2 \log \left( x +\sqrt{x^2 +a^2} \right) +C \quad (a > 0) \end{equation}

アルキメデスの螺旋でハート その3

アルキメデスの螺旋 \begin{equation} r = \theta \end{equation}

アルキメデスの螺旋でハート その2

アルキメデスの螺旋 \begin{equation} r = \theta \end{equation}

アルキメデスの螺旋でハート

アルキメデスの螺旋 \begin{equation} r = \theta \end{equation}