数式で独楽する

数式を使って楽しむブログです

[tex: ]

円錐曲線その3~放物線

円錐を平面で切断すると、

  • 楕円
  • 放物線
  • 双曲線

が得られます。これらを総称して、円錐曲線と呼ばれます。

母線に平行な平面で切断すると、断面は放物線(抛物線)になります。

具体的を示します。
\begin{equation}
x^2 + y^2 =z^2 \tag{1}
\end{equation}で表される円錐を、 y軸を中心に \theta回転させます。 0^\circ \leqq \theta \leqq 90^\circとします。つまり、式(1)において、
\begin{eqnarray}
x & \to & x \cos \theta -z \sin \theta \\
z & \to & x \sin \theta +z \cos \theta
\end{eqnarray}と置き換えます。
回転行列 - 数式で独楽する

変形します。
\begin{eqnarray}
(x \cos \theta -z \sin \theta)^2 +y^2 &=& (x \sin \theta +z \cos \theta)^2 \\
x^2 (\cos^2 \theta -\sin^2 \theta) -4xz \cos \theta \, \sin \theta +y^2 &=& z^2 (\cos^2 \theta -\sin^2 \theta)
\end{eqnarray}倍角の公式を用い、
\begin{equation}
x \cos 2\theta -2xz \sin 2\theta +y^2 = z^2 \cos 2\theta \tag{2}
\end{equation}を得ます。
倍角の公式 - 数式で独楽する

式(2)で \theta = 45^\circとすると、
\begin{equation}
y^2 = 2xz
\end{equation}となります。
ここで zを固定すると、断面が放物線(抛物線)となっていることが分かります。
また、 zの絶対値を大きくしていくと、つまり平面を母線から離していくと、断面の放物線は広がっていきます。

 \theta \ne 45^\circの場合はこちら
円錐曲線その4~楕円 - 数式で独楽する


toy1972.hatenablog.com